Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 212: 493-504, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38184120

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance. Verteporfin (VP) is a photosensitizer used for photodynamic therapy and previous work showed that it can function as a YAP inhibitor. The efficacy of VP on human cancer are being tested in several trials. In this study, we examined the effect of VP on reactive oxygen species (ROS) and lipid peroxidation in pancreatic cancer cells, by using fluorescent molecular probes and by measuring the levels of malondialdehyde, a metabolic byproduct and marker of lipid peroxidation. We found that VP causes rapid increase of both overall ROS and lipid peroxide levels, independent of light activation. These effects were not dependent on YAP, as knockdown of YAP did not cause ROS or lipid peroxidation or enhance VP-induced ROS production. Temoporfin, another photodynamic drug, did not show similar activities. In addition, VP treatment led to loss of cell membrane integrity and reduction of viability. Notably, the activity of VP to induce lipid peroxidation was neutralized by ferroptosis inhibitors ferrostatin-1 or liproxstatin-1. VP treatment also reduced the levels of glutathione peroxidase 4 (GPX4), an enzyme that protects against lipid peroxidation. These results indicate that VP can induce lipid peroxidation and ferroptosis in the absence of light activation. Our findings reveal a novel mechanism by which VP inhibits tumor growth and provide insights into development of new therapeutic strategies for the treatment of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Humanos , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética
2.
Res Sq ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076821

RESUMO

Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.

3.
J Biomol Struct Dyn ; 41(17): 8517-8534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36271642

RESUMO

Pancreatic adenocarcinoma is a disease with no effective treatment. Chemo-resistance contributes to the dismal prognosis for patients diagnosed with the disease. This study aims to evaluate the toxicity and the effect of Caralluma europaea (C.E) extracts on cancer cell survival, apoptosis, chemo-resistance, and pro-cancer pathways, in pancreatic cancer. The acute and subacute toxicities of C.E extracts were evaluated. The cytotoxic effect on pancreatic cancer cell survival and apoptosis was determined by MTT assay and DNA fragmentation. The expression of cancer stemness markers was measured using Western blot. A molecular docking was used to test the possible effects of C.E compounds in inhibiting the Hedgehog and activating caspase-3. The hydroethanolic extract's DL50 was over 5000 mg/kg. During the subacute toxicity, only saponins extract showed some hepatic toxicity signs. Cells treated with C.E extracts combined with gemcitabine revealed an additive anti-survival activity. C.E extracts sensitized resistant MIA-PaCa-2 to gemcitabine treatment. Most of the C.E extracts downregulated the expression of cancer stemness-associated genes. Luteolin-7-O-glucoside presented the highest docking Gscore on human Smoothened. Isorhamnetin-3-O-rutinoside induced apoptosis via activation of caspase-3. C.E extracts can be considered safe in inhibiting pancreatic cancer cell survival, inducing apoptosis, and sensitizing cells to chemotherapy via Hedgehog inhibition and caspase-3 activation.Communicated by Ramaswamy H. Sarma.

4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430630

RESUMO

Glycogen synthase kinase 3 beta (GSK-3ß) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3ß is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3ß creating confusion about the benefit of targeting GSK-3ß for treating cancer. In this mini-review, we focus on the role of GSK-3ß in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3ß are not relevant to pancreatic cancer, and we argue why GSK-3ß is, indeed, a very promising therapeutic target in pancreatic cancer.


Assuntos
Glicogênio Sintase Quinase 3 beta , Neoplasias Pancreáticas , Humanos , Apoptose/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166486, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835415

RESUMO

BACKGROUND: Alcohol abuse, a main cause of pancreatitis, has been known to augment NF-κB activation and cell necrosis in pancreatitis. However, the underlying mechanisms are unclear. We recently reported that inhibition of protein kinase D (PKD) alleviated NF-κB activation and severity of experimental pancreatitis. Here we investigated whether PKD signaling mediated the modulatory effects of alcohol abuse on pathological responses in alcoholic pancreatitis. METHODS: Alcoholic pancreatitis was provoked in two rodent models with pair-feeding control and ethanol-containing Lieber-DeCarli diets for up to 8 weeks followed by up to 7 hourly intraperitoneal injections of cerulein at 1 µg/kg (rats) or 3 µg/kg (mice). Effects of PKD inhibition by PKD inhibitors or genetic deletion of pancreatic PKD isoform (PKD3Δpanc mice) on alcoholic pancreatitis parameters were determined. RESULTS: Ethanol administration amplified PKD signaling by promoting expression and activation of pancreatic PKD, resulted in augmented/promoted pancreatitis responses. Pharmacological inhibition of PKD or with PKD3Δpanc mice prevented the augmenting/sensitizing effect of ethanol on NF-κB activation and inflammatory responses, cell necrotic death and the severity of disease in alcoholic pancreatitis. PKD inhibition prevented alcohol-enhanced trypsinogen activation, mRNA expression of multiple inflammatory molecules, the receptor-interacting protein kinase activation, ATP depletion, and downregulation of pro-survival Bcl-2 protein in alcoholic pancreatitis. Furthermore, PKD inhibitor CID755673 or CRT0066101, administrated after the induction of pancreatitis in mouse and rat alcoholic pancreatitis models, significantly mitigated the severity of pancreatitis. CONCLUSION: PKD mediates effect of alcohol abuse on pathological process of pancreatitis and constitutes a novel therapeutic target to treat this disease.


Assuntos
Alcoolismo , Pancreatite Alcoólica , Trifosfato de Adenosina , Alcoolismo/complicações , Alcoolismo/tratamento farmacológico , Alcoolismo/genética , Animais , Ceruletídeo , Etanol/toxicidade , Camundongos , NF-kappa B/metabolismo , Necrose , Pancreatite Alcoólica/tratamento farmacológico , Pancreatite Alcoólica/genética , Pancreatite Alcoólica/metabolismo , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Mensageiro , Ratos , Tripsinogênio
6.
Adv Ther (Weinh) ; 5(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36590644

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a disease with no effective therapeutics. We have developed a novel targeted therapy drug consisting of a tumor-targeting ligand, near-infrared (NIR) organic heptamethine carbocyanine dye (HMCD), and HMG-CoA inhibitor simvastatin (SIM), and assessed its efficacy in PDAC. PDAC cell specific targeting of DZ-SIM was measured by determining the fluorescence in cells and animals. Mitochondrial bioenergetics and functions were measured by Seahorse and flow cytometry, respectively. Apoptosis was assessed by DNA fragmentation, AnnexinV/Propidium Iodide staining, and TUNEL. Markers of cell invasion, epithelial-to-mesenchymal transition, and cancer stemness were measured. The effect of DZ-SIM on survival, tumor growth and metastasis was measured in the Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) transgenic mice and in syngeneic and subcutaneous PDAC models. NIR fluorescence imaging showed specific localization of DZ-SIM to cancer, but not to normal cells and tissues. DZ-SIM significantly inhibited tumor growth and re-sensitized therapeutically resistant PDAC cells to conventional therapies. DZ-SIM killed cancer cells through unique pathways involving decreasing mitochondrial bioenergetics, including oxygen consumption and ATP production, and increasing ROS production. Mitochondrial depletion prevented the effect of DZ-SIM. Administration of DZ-SIM in 3 PDAC animal models resulted in a marked increase in survival and a decrease in tumor growth and metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...